January 2025
M T W T F S S
 12345
6789101112
13141516171819
20212223242526
2728293031  

Posted on

By

Categories:

Tags:

An inequality problem

Let f be a continuous integrable real function on [0,1], then

    \[\int_{0}^{1} e^{f(x)} dx \cdot \int_{0}^{1} e^{-f(y)} dy \geq 1\]

Solution 1

By Cauchy-Schwarz inequality,

    \begin{align*} \int_{0}^{1} e^{f(x)} dx \cdot \int_{0}^{1} e^{-f(y)} dy &\geq \left(\int_{0}^{1} e^{f(x) - f(x)} dx\right)^2 \\ &= \left(\int_{0}^{1} 1 \, dx\right)^2 \\ &= 1. \end{align*}

Solution 2

By Jensen’s inequality, since e^x is a convex function, we have

    \[\int_{0}^{1}e^{f(x)}dx \ge e^{\int_{0}^{1}f(x)dx}\]

So

    \begin{align*}\int_{0}^{1} e^{f(x)} dx \cdot \int_{0}^{1} e^{-f(y)} dy&\geq e^{\int_{0}^{1}f(x)dx}\cdot e^{\int_{0}^{1}-f(x)dx}\\&=e^0\\&=1\end{align*}

Solution 3

By Hölder’s Inequality, we get

    \[\int_{0}^{1}\vert u(x)v(x) \vert\leq \left(\int_{0}^{1}\vert u(x)\vert^p dx \right)^{\frac{1}{p}}\left(\int_{0}^{1}\vert u(x)\vert^q dx \right)^{\frac{1}{q}}\]

Choose p=q=2, we get the case of solution 1. We can also take u(x)=e^{f(x)/p} and v(x)=e^{f(x)/q}, which would be similar.

Solution 4

Leave a Reply

Your email address will not be published. Required fields are marked *